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The resul ts  of an experimental  investigation of heat t r ans fe r  in turbulent separat ion zones be-  
fore steps are  presented.  The experimental  data are  compared with the calculation on the 
basis  of the relat ions used in the case of flow past  a surface without separat ion and local flow 
pa rame te r s  at the boundary of a wall boundary layer.  

The purpose of this study was to check the possibil i ty of calculating heat t r ans fe r  in the wall boundary 
layer  of turbulent separat ion zones before steps by methods of calculating heat t r ans fe r  in the boundary 
layer  with flow past  a surface without separation.  

The investigation was ca r r i ed  out at  a subsonic velocity of the a i r  flow. The experimental  section 
represented  a plate on which steps of various geometr ic  shape were installed: two dimensional rectangular  
steps, three-d imensional  steps in the form of cyl inders  with a d iameter - to-he ight  ratio of 2, and a rectan-  
gular parallelepiped with a width-to-height  ratio of 1. Data obtained experimental ly  with plane steps of 
height H =30 and 150 mm are  presented in the ar t ic le .  

Two-dimensional i ty  of the flow was provided by installing side wails of the channel. The absence of 
the influence of end effects on the flow and heat t r ans fe r  in the g rea te r  par t  of the channel (excluding small  
sections near  the side walls) was checked by special  exper iments .  The steps and the plate were equipped 
in the plane of s y m m e t r y  with packets of plane copper  ca lo r ime te r s  from 1 to 5 mm wide and 0 .5 -mm-d i -  
ame te r  drain holes. The heat fluxes were measured  by the method of a regular  regime of the f i rs t  kind. 
The maximum total e r r o r  of measur ing  the hea t - t r ans fe r  coefficient as a result  of two measurements  with 
probabil i ty 0.95 did not exceed 15%. The value of the tempera ture  factor  Twe = 0.7. 

The flow in the separat ion zone was visualized by applying special  colors  on the surface of the step 
and plate. The local flow pa ramete r s  at the boundary of the wall boundary layer  in the separat ion zonewere  
determined from the resul ts  of measur ing  the static p r e s su re  and the total p ressure  profiles in a number  
of sections near  the surface of the step and plate. To measure  the total p ressure  we used a microprobe  
with a plane receiving par t  of thickness 0.15 mm and width 2 mm. The results  of determining the velocity 
at the boundary of the wall boundary layer  based on the data of measur ing  the total and static p r e s su re s  
were checked (in cer ta in  sections) by measur ing  the velocity by means of an ETAM-3A hot-wire  anemometer .  
The difference in the measurement  resul ts  by other methods did not exceed 15%. 

Figure i shows the results  of t reat ing the experimental  data obtained in the acce lera ted  flow sections 
from the spreading lines r and 2. It should be noted that the acce lera ted  flow in section in the separat ion 
zone on the step amounts to 60% of the distance from point r to the base of the step and on the plate to 25- 
50% of the length of the separat ion zone. Here the maximum values of the heat fluxes on the plate are  ob- 
served in the acce lera ted  flow section. 

The experimental  data were t reated in the following way. On the basis of the flow pa ramete r s  at the 
boundary of the wall boundary layer  and by the method in [1, 2] we calculated the effective coordinate x e 
reckoned from the spreading lines r or  2. Then we determined the Nusselt number Nu e = a X e / ~  w and 
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Fig. 1. Data on heat t r ans fe r  in the separation zone. For  the step: 1) H =30 mm, uoo =41 m / s e c ,  
5 ~ = 1 0 m m ;  2) 3 0 m m ,  uoo=340 m/ sec ,  6 s = 1 0 m m ;  3) 3 0 m m ,  u o o = 3 4 0 m / s e c ,  5 s = 3 m m ;  4) 

* =3 mm; 6) 150mm,  u~ 150 mm, u~o = 1 2 2 m / s e c .  For the  plate: 5) H =30 mm, ur =340 m / s e c ,  5 s 
=122 m/ sec ;  7) according to relation (1); 8) according to relation (2) 

Fig. 2. K vs Re a for different values of 6s/H (Twe =0.7): 1) 6s /H =0.8; 2) 0.38; 3) 0,15; 4) 0.1; 

5) 0.03. 

Reynolds number Re e =PwUXe/Pw . The relations Nu e = f(Re e) obtained were compared  with the relations 
for calculating heat t r ans fe r  on a plate in the case of laminar and turbulent boundary layers:  

Nu = 0.332 Roo.  v 
~twPw / 

and 

Nu = 0.029Re ~ Pr ~ --~eT~ (2) 

We will consider  the data on heat t r ans fe r  in the acce lera ted  flow section on the step. In the vicinity 
of the spreading line r there is a unique laminar regime of heat t r ans fe r  descr ibed by the relation 

Nu e = A Re ~ (3) 

For  small  flow velocities and heights of the step (Fig. 1, 1) the experimental  data are  close to the dimen- 
sionless relation (1) for calculating heat t r ans fe r  in a laminar boundary layer  on a plate. With an increase  
of flow velocity (2) the relation Nu e ~ Ree~ is retained, but we observe strat if icat ion of the data c o r r e -  
sponding toan increase  of the proportionali ty factor A. The proport ionali ty factor  A depends also on the 
l inear dimensions of the separat ion zone, for example, an increase  of the height of the separation zone h r 
(distance from the base of the step to point r) f rom 19 to 69 mm resulted in a value of A ~ 0.6 being ob- 
tained at velocity uoo = 122 m / s e c  (Fig. 1, 4) instead of uoo =340 m / s e c  (3). In addition, a change of 5 s leads 
to stratif ication of the experimental  data and to a change of A, which is seen from a compar ison of 2 and 3. 

The effect of increased turbulence in the separat ion zone on heat t r ans fe r  in the laminar flow sections 
in the wall boundary layer may be a possible cause of intensification of heat t r ans fe r  and increase  of A by 
a factor  of 2-3. 

The measurements  by the ~TAM-3A hot-wire anemometer  showed that the intensity of turbulence at 
the boundary of the wail layer  in the two-dimensional  separat ion zone reached 20-60% depending on the 
pa ramete r  6s /H and prehis tory  of the flow. 

Intensification of heat t r ans fe r  in the separat ion zone can be charac te r ized  by the Coefficient K 

K = Nue 
(~|174 \o.44 3 - -  " 

0.332 ReO, ~ ) 1/Pr (4) 
\~t~pw 

The change of K in the acce lera ted  flew section on the two-dimensional  rectangular  step is shown in Fig. 2. 
An analysis  showed that K depends on 6*/H and on the Reynolds number Re a =PwUahr/Pw , where u a is the 
maximum velocity at the boundary of the wall boundary layer  on the step. It is interest ing to note that 
when Re a < 10 4 intensification of heat t r ans fe r  does not occur  and K = 1 in the entire investigated range of 
5s/H.  For  large Re a number a decrease  of 6*s/H corresponding to the decrease  of turbulence intensity 
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leads to a decrease  of K. Thus, a change of K = f(Re a, 5*/H) agrees  qualitatively with the data in [3] on 
the effect of the Reynolds number and turbulence intensity of the external  flow on heat t r ans fe r  in a laminar 
boundary layer  in a flow with a positive velocity gradient.  

Similar results  were obtained on investigating heat t r ans fe r  i n theacce le ra t ed  flow section in the sep- 
ara t ion zone on a plate {before two-dimensional  steps). For  large Reynolds numbers  the laminar regime 
of heat t r ans fe r  is retained only in the immediate vicinity of the spreading line 2, and then comes a section 
with a turbulent regime.  We see from Fig. 1 that 5 and 6 for large Reynolds numbers coincide with relation 
(2) for a turbulent boundary layer.  

Thus heat t r ans fe r  in acce lera ted  flow sections in separat ion zones can be determined from the re la-  
tions obtained for flow without separat ion and from the local flow pa ramete r s  at the boundary of a wal lboua-  
dary  layer.  However, here it is necessa ry  to take into account intensification of heat t r ans fe r  in laminar  
flow sections in the wail boundary layer  of turbulent separat ion zones. 
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S u b s c r i p t s  

W, 

N O T A T I O N  

is the height of step; 
is the height of separat ion zone; 
is the effective coordinate reckoned from the spreading line; 
is the displacement  thickness of boundary layer  at separat ion 
line; 
is the velocity of oncoming flow; 
a re the velocities at b ounda ry  of wa[l boundary laye r and maximum 
velocity at boundary of wall layer of step; 
is the density; 
is the dynamic viscos i ty  coefficient; 
is the thermal  conductivity; 
is the hea t - t r ans fe r  coefficient; 
is the tempera ture  factor; 
is the Prandtl  number;  
is the Nusselt  number; 
are  the Reynolds number.  

re fe rs  to the pa ramete r s  of oncoming flow; 
re fe rs  to on the surface.  
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